Home
Class 12
MATHS
The value of (a+bomega+comega^2)/(b+come...

The value of `(a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2)` (where `'omega'` is the imaginary cube root of unity), is `-omega` b. `omega^2` c. `1` d. `-1`

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is a.-omega b. omega^2 c. 1 d. -1

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

If p=a+b omega+c omega^(2);q=b+c omega+a omega^(2) and r=c+a omega+b omega^(2) where a,b,c!=0 and omega is the complex cube root of unity,then

Prove that a^3 + b^3 + c^3 – 3abc = (a + b + c) (a + bomega + comega^2) (a + bomega^2 + "c"omega) , where omega is an imaginary cube root of unity.