Home
Class 12
MATHS
If |a(i)|lt1lamda(i)ge0 for i=1,2,3,.......

If `|a_(i)|lt1lamda_(i)ge0` for `i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1` then the value of `|lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)|` is :

A

Equal to 1

B

Less then 1

C

Greater then 1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If |a_(i)| lt 1, lambda_(i) ge 0 for i=1,2,……n and lambda_(1)+lambda_(2)+…….+lambda_(n)=1 , then the value of |lambda_(1)a_(1)+lambda_(2)a_(2)+…….+lambda_(n)a_(n)| is

If |a_i| < 1,lamda_i geq0 for i=1,2,3,...,n and lambda_1+lamda_2+...lambda_n=1 then the value of |lambda_1 a_1+lambda_2 a_2+......+lambda_n a_n| is

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

Q.if a_(1)>0f or i=1,2,......,n and a_(1)a_(2),......a_(n)=1, then minimum value (1+a_(1))(1+a_(2)),...,,(1+a_(n)) is :

If A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,3,....n and a_(1)

lamda_1, lamda_2, lamda_3 are the first 3 lines of balmer series. Find lamda_1//lamda_3

. If a_(1),a_(2),a_(3),...,a_(2n+1) are in AP then (a_(2n+1)+a_(1))+(a_(2n)+a_(2))+...+(a_(n+2)+a_(n)) is equal to

If a_(1),a_(2),a_(3),dots,a_(n+1) are in A.P.then (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))...+(1)/(a_(n)a_(n+1)) is

The matrix A={:[(lamda_(1)^(2),lamda_(1)lamda_(2),lamda_(1)lamda_(3)),(lamda_(2)lamda_(1),lamda_(2)^(2),lamda_(2)lamda_(3)),(lamda_(3)lamda_(1),lamda_(3)lamda_(2),lamda_(3)^(2))]:} is idempotent if lamda_(1)^(2)+lamda_(2)^(2)+lamda_(3)^(2)=k where lamda_(1),lamda_(2),lamda_(3) are non-zero real numbers. Then the value of (10+k)^(2) is . . .

If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360 , then the value of lamda is