Home
Class 12
MATHS
If z^(3)+(3+2i)z+(-1+ia)=0, " where " i=...

If `z^(3)+(3+2i)z+(-1+ia)=0, " where " i=sqrt(-1)`, has one real root, the value of a lies in the interval (a `in` R)

A

`(-2,1)`

B

`(-1,0)`

C

`(0,1)`

D

`(-2,3)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If z^(3)+3+2i(z+(-1+ia)=0 has on ereal roots,then the value of a lies in the interval (a in R)(-2,1) b.(-1,0) c.(0,1) d.(-2,3)

If 8iz^(3)+12z^(2)-18z+27i=0, (where i=sqrt(-1)) then

If the equation z^(3)+(3+i)z^(2)-3z-(m+i)=0, " where " i=sqrt(-1) " and " m in R , has atleast one real root, value of m is

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

Prove that z=i^(i), where i=sqrt(-1), is purely real.

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If z=(-2(1+2i))/(3+i) where i=sqrt(-1) then argument theta(-pilt thetalepi) of z is

sin^(-1){(1)/(i)(z-1)}, where z is non real and i=sqrt(-1), can be the angle of a triangle If:

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is