Home
Class 12
MATHS
The value of the expression 2(1+(1)/(ome...

The value of the expression `2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2)))` where `omega` is an imaginary cube roots of unity, is:

A

`(n(n^(2)+2))/(3)`

B

`(n(n^(2)-2))/(3)`

C

`(n^(2)(n+1)^(2)+4n)/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ S = 2\left(1 + \frac{1}{\omega}\right)\left(1 + \frac{1}{\omega^2}\right) + 3\left(2 + \frac{1}{\omega}\right)\left(2 + \frac{1}{\omega^2}\right) + 4\left(3 + \frac{1}{\omega}\right)\left(3 + \frac{1}{\omega^2}\right) + \ldots + (n + 1)\left(n + \frac{1}{\omega}\right)\left(n + \frac{1}{\omega^2}\right) \] where \(\omega\) is an imaginary cube root of unity, we can break it down step by step. ### Step 1: Understanding the properties of \(\omega\) The cube roots of unity satisfy the following properties: 1. \(\omega^3 = 1\) 2. \(1 + \omega + \omega^2 = 0\) ### Step 2: Simplifying the \(r\)-th term The \(r\)-th term can be expressed as: \[ T_r = r(r + 1)\left(1 + \frac{1}{\omega}\right)\left(1 + \frac{1}{\omega^2}\right) \] Calculating \(\left(1 + \frac{1}{\omega}\right)\left(1 + \frac{1}{\omega^2}\right)\): \[ \left(1 + \frac{1}{\omega}\right)\left(1 + \frac{1}{\omega^2}\right) = 1 + \frac{1}{\omega} + \frac{1}{\omega^2} + \frac{1}{\omega \cdot \omega^2} \] Since \(\omega \cdot \omega^2 = \omega^3 = 1\), we have: \[ = 1 + \frac{1}{\omega} + \frac{1}{\omega^2} + 1 = 2 + \frac{1}{\omega} + \frac{1}{\omega^2} \] Now, using the property \(1 + \omega + \omega^2 = 0\), we can express \(\frac{1}{\omega} + \frac{1}{\omega^2}\) as: \[ \frac{1}{\omega} + \frac{1}{\omega^2} = \frac{\omega + 1}{\omega^2} = -1 \quad (\text{since } \omega + \omega^2 = -1) \] Thus, \[ \left(1 + \frac{1}{\omega}\right)\left(1 + \frac{1}{\omega^2}\right) = 2 - 1 = 1 \] ### Step 3: Substituting back into the \(r\)-th term Now we have: \[ T_r = r(r + 1) \cdot 1 = r(r + 1) \] ### Step 4: Summing the series The entire expression \(S\) can now be rewritten as: \[ S = \sum_{r=1}^{n} r(r + 1) = \sum_{r=1}^{n} (r^2 + r) \] This can be separated into two sums: \[ S = \sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r \] Using the formulas for these sums: 1. \(\sum_{r=1}^{n} r^2 = \frac{n(n + 1)(2n + 1)}{6}\) 2. \(\sum_{r=1}^{n} r = \frac{n(n + 1)}{2}\) ### Step 5: Final expression for \(S\) Putting it all together: \[ S = \frac{n(n + 1)(2n + 1)}{6} + \frac{n(n + 1)}{2} \] To combine these, we can find a common denominator: \[ S = \frac{n(n + 1)(2n + 1)}{6} + \frac{3n(n + 1)}{6} = \frac{n(n + 1)(2n + 1 + 3)}{6} = \frac{n(n + 1)(2n + 4)}{6} \] Simplifying further gives: \[ S = \frac{n(n + 1)(n + 2)}{3} \] ### Final Answer Thus, the value of the expression is: \[ \frac{n(n + 1)(n + 2)}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega)(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

The value of the expression (1+(1)/(w))(1+(1)/(w^(2)))+(2+(1)/(w))(2+(1)/(w^(2)))+(3+(1)/(w))(3+(1)/(w^(2)))+......+(n+(1)/(w))(n+(1)/(w^(2))) where w is an imaginary cube root of unity

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………