Home
Class 12
MATHS
Let A={z:"Im"(z) ge 1}, B={z:|z-2-i|=3},...

Let `A={z:"Im"(z) ge 1}, B={z:|z-2-i|=3}, C={z:"Re"{(1-i)z}=sqrt(2)}` be three sides of complex numbers. Then, the number of elements in the set `A frown B frown C`, is

A

0

B

1

C

2

D

`oo`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A,B,C be three sets of complex number as defined below: A={z:Im>=1},B={z:|z-2-i|=3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set A nn B nn C is

Let A,B,C be three sets of complex number as defined below A={z:lm (z) ge 1} B={z:|z-2-i|=3} C={z:Re((1-i)z)=sqrt(2)} Let z be any point in A cap B cap C and let w be any point satisfying |w-2-i|lt 3 Then |z|-|w|+3 lies between

If z is a complex number such that Re(z)=Im(2), then

Let z in C, the set of complex numbers. Thenthe equation,2|z+3i|-|z-i|=0 represents :

P={z:Im z>=1}Q={z:|z-2-i|=3}R={z:Re(1-i)z=sqrt(2)} if Z in P nn Q nn R then |z+1-i|^(2)+|z-5-i|^(2)=

The conjugate of a complex number z is (2)/(1-i) . Then Re(z) equals