Home
Class 12
MATHS
Let a,b in R and a^(2) + b^(2) ne 0 . ...

Let a,b ` in ` R and `a^(2) + b^(2) ne 0` . Suppose `S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0}`, where `i= sqrt(-i)`. If `z = x + iy` and z in S, then (x,y) lies on

A

the circle with radius `(1)/(2a)` and centre `((1)/(2a),0)" for " a gt 0,b ne 0`

B

the circle with radius ` - (1)/(2a) ` and centre ` (-(1)/(2a),0) " for " a lt 0 , b ne 0 `

C

the x-axis for ` a ne 0 ,b= 0 `

D

`the y-axis for a = 0 , ` ne ` 0

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b in R and a^(2) + b^(2) ne 0 . Suppose S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0} , where i= sqrt(-1) . If z = x + iy and z in S, then (x,y) lies on

Let 0 ne a, 0 ne b in R . Suppose S={z in C, z=1/(a+ibt)t in R, t ne 0} , where i=sqrt(-1) . If z=x+iy and z in S , then (x,y) lies on

Let a,b in R and a^2+ b^2 ne 0 Suppose S={z in C : z =(1)/(alpha +I bt ), t in R, t ne 0 } where I= sqrt(-1) if z=x +iy and ne S, then (x,y) lies on

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If Re((z-1)/(2z+i))=1, where z=x+iy ,then the point (x,y) lies on a

If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

Let A = {z : z in C, iz^(3) + z^(2) -z + i=0} and B ={z : z in C, |z|=1} , Then

If z = x + iy, x , y in R , then the louts Im (( z - 2 ) /(z + i)) = (1 ) /(2) represents : ( where i= sqrt ( - 1))

If z+sqrt(2)|z+1|+i=0 and z=x+iy then