Home
Class 12
MATHS
For any integer k , let alphak=cos(kpi)/...

For any integer `k ,` let `alpha_k=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt(-1)dot` Value of the expression `(sumk=1 12|alpha_(k+1)-alpha_k|)/(sumk=1 3|alpha_(4k-1)-alpha_(4k-2)|)` is

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

For any integer k, let alpha_(k)=cos((k pi)/(7))+i sin((k pi)/(7)), wherei =sqrt(-1) Value of the expression (sum_(k=1)^(12)| alpha_(k+1)-alpha_(k)|)/(sum_(k=1)^(3)| alpha_(4k-1)-alpha_(4k-2)|) is

Solve the equation (1+k)cosxcos(2x-alpha)=(1+kcos2x)cos(x-alpha)

If an angle alpha is divided into two parts A&B such that A-B=x and tan A:tan B=k:1 Then the value of sin x is (A) (k+1)/(k-1)sin alpha (k)/(k+1)sin alpha (C) (k-1)/(k+1)sin alpha (D) tan alpha

If sin theta=k sin(theta+2 alpha) prove that tan(theta+alpha)=(1+k)/(1-k)tan alpha

If k>1, and the determinant of the matrix A^(2)=[[k,k alpha,alpha0,alpha,k alpha0,0,k]] is (:k^(2) then | alpha|=

If alpha_(1),alpha_(2),alpha_(3),.........,alpha_(n) are the roots of f(x)=0 then the equation whose roots (alpha_(1))/(K),(alpha_(2))/(K),(alpha_(3))/(K),.........(alpha_(n))/(K) is where , K!=0

If alpha,beta are the zeros of the polynomial x^(2)-(k+6)x+2(2k-1)* Find k if alpha+beta=(1)/(2)(alpha*beta)

If alpha_r=(cos2rpi+isin2rpi)^(1/10) , then |(alpha_1, alpha_2, alpha_4),(alpha_2, alpha_3, alpha_5),(alpha_3, alpha_4, alpha_6)|= (A) alpha_5 (B) alpha_7 (C) 0 (D) none of these

If k>1, and the determinant of the matrix A^(2)=[[k,k alpha,alpha0,alpha,k alpha0,0,k]] is k^(2) then | alpha|=