Home
Class 12
MATHS
If |z| le1 and |w| lt 1, then shown that...

If `|z| le1` and `|w| lt 1`, then shown that `|z - w|^(2) lt (|z| - |w|)^(2)+ (arg z - arg w)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`|z-w|^(2) le (|z|-|v|)^(2) ("arg z - arg w ")^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

| z | <= 1, | w | <= 1, then show that | zw | ^ (2) <= (| z | - | w |) ^ (2) + (argz-argw) ^ (2)

If |z|<=1 and | omega|<=1, show that |z-omega|^(2)<=(|z|-| omega|)^(2)+(argz-arg omega)^(2)

If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

If arg(z) lt 0, then find arg(-z) -arg(z) .

If | z_ (1) + z_ (2) | = | z_ (1) -z_ (2) |, then arg z_ (1) -arg z_ (2) =

If omega ne 1 is a cube root of unity and |z-1|^(2) + 2|z-omega|^(2) = 3|z - omega^(2)|^(2) then z lies on

For complex numbers z and w, prove that |z|^(2)w-|w|^(2)z=z-w, if and only if z=w or zbar(w)=1.