Home
Class 12
MATHS
Let Z0 is the root of equation x^2+x+1=0...

Let `Z_0` is the root of equation `x^2+x+1=0` and `Z=3+6i(Z_0)^(81)-3i(Z_0)^(93)` Then arg `(Z)` is equal to (a) `(pi)/(4)` (b) `(pi)/(3)` (c) `pi` (d) `(pi)/(6)`

A

`(pi)/(4)`

B

`(pi)/(6)`

C

`(pi)/(3)`

D

`0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If z=(1+2i)/(1-(1-i)^(2)), then arg (z) equals a.0 b.(pi)/(2) c.pi d .non of these

if arg(z+a)=(pi)/(6) and arg(z-a)=(2 pi)/(3) then

If (pi)/(2) and (pi)/(4) are the arguments of z_ (1) and bar (z_ (2)) respectively, then Arg ((z_ (1))/(z_ (2)) ) = (i) 3 (pi)/(4) (ii) (pi)/(4) (iii) pi (iv) (pi)/(3)

The angle between the planes 2x-y+z=6 and x+y+2z=7 is (A) pi/4 (B) pi/6 (C) pi/3 (D) pi/2

Find the value of z, if |z |= 4 and arg (z) = (5pi)/(6) .