Home
Class 12
MATHS
Show that the point (x,y) given y x = (...

Show that the point (x,y) given y `x = ( 2at)/( 1+t^(2))` and `y = (a( 1-t^(2)))/( 1+t^(2))` lies on a circle..

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the point (x,y) given by x=(2at)/(1+t^(2)) and y=((1-t^(2))/(1+t^(2))) lies on a circle for all real values of t such that -1<=t<=1 where a is any given real number.

Find dy/dx if x=(2at)/(1+t^2) , y=(a(1-t^2))/(1+t^2)

Find dy/dx: x=(2at)/(1+t^2), y=(a(1-t^2))/(1+t^2)

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

A function y=f(x) is given by x=(1)/(1+t^(2)) and y=(1)/(t(1+t^(2))) for all t>0 then f is

If x=t^(2) and y=2t at t=1 is

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)