Home
Class 12
MATHS
If the polar of a point (p,q) with respe...

If the polar of a point `(p,q)` with respect to the circle `x^2 +y^2=a^2` touches the circle `(x-c)^2 + (y-d)^2 =b^2`, then

A

`b^(2) ( p^(2) + q^(2)) = ( a^(2) -cp -dp)^(2)`

B

`b^(2) ( p^(2) + q^(2)) = ( a^(2) -cq -dp)^(2)`

C

`a^(2) ( p^(2) + q^(2)) = ( b^(2) -cp -dp)^(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the polar of the point (-2,3) with respect to the circle x^(2)+y^(2)-4x-6y+5=0

If the pole of a straight line with respect to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=9a^(2) , then the straight line touches the circle

If the chord of contact of tangents from a point P(h, k) to the circle x^(2)+y^(2)=a^(2) touches the circle x^(2)+(y-a)^(2)=a^(2) , then locus of P is

If the chord of contact of tangents from a point (x_(1),y_(1)) to the circle x^(2)+y^(2)=a^(2) touches the circle (x-a)^(2)+y^(2)=a^(2), then the locus of (x_(1),y_(1)) is

chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)=81 to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=16 , then the value of b is

If the chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)+y^(2)=a^(2) to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=c^(2), then prove that a,b and c are in GP.

The locus of the point of intersection of the tangents at the extermities of a chord of the circle x^2+y^2=b^2 which touches the circle x^2+y^2-2by=0 passes through the point