Home
Class 12
MATHS
If the circles (x-a)^(2)+(y-b)^(2)=c^(2)...

If the circles `(x-a)^(2)+(y-b)^(2)=c^(2)` and `(x-b)^(2)+(y-a)^(2)=c^(2)` touch each other, then

A

`a = b+- 2c`

B

`a= b+- sqrt(2) c `

C

`a= b+-c `

D

`a= b^(2) -c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) , is

If circles (x -1)^(2) + y^(2) = a^(2) " and " (x + 2)^(2) + y^(2) = b^(2) touch each other externally , then

If two circles x^(2)+y^(2)+c^(2)=2ax and x^(2)+y^(2)+c^(2)-2by=0 touch each other externally , then prove that (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Prove that the circles x^(2)+y^(2)+2ax+c^(2)=0andx^(2)+y^(2)+2by+c^(2)=0 touch each other, if (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2)) .