Home
Class 12
MATHS
If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) ...

If `sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0` then x belongs to the interval

A

[-1 , 1]

B

`[-(1)/(sqrt(2)), 1]`

C

`[-(1)/(sqrt(2)), (1)/(sqrt(2))]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

if cos^(-1)x>sin^(-1)x, then x belongs to the interval

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

If x^(2)-2x+sin^(2)theta=0 then x belongs to

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

int(1)/(sin^(-1)xsqrt(1-x^(2)))dx

The formula sin^(-1){2xsqrt(1-x^(2))}=2 sin^(-1) x is true for all values of x lying in the interval

If log_(0.04)(x-1)>=log_(0.2)(x-1) then x belongs to the interval

If log_(0.04)(x-1)gelog_(0.2)(x-1) then x belongs to the interval

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=

sin^(-1)(xsqrt(x)),0 le x le 1