Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-...

If `sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3)` then the number of values of (x, y) is :

A

two

B

four

C

zero

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have the following equations: 1. \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \) (Equation 1) 2. \( \cos^{-1} x - \cos^{-1} y = \frac{\pi}{3} \) (Equation 2) We need to find the number of values of \( (x, y) \). ### Step 1: Rewrite the second equation Using the identity \( \cos^{-1} a = \frac{\pi}{2} - \sin^{-1} a \), we can rewrite Equation 2: \[ \cos^{-1} x - \cos^{-1} y = \frac{\pi}{3} \implies \left(\frac{\pi}{2} - \sin^{-1} x\right) - \left(\frac{\pi}{2} - \sin^{-1} y\right) = \frac{\pi}{3} \] This simplifies to: \[ -\sin^{-1} x + \sin^{-1} y = \frac{\pi}{3} \] Rearranging gives us: \[ \sin^{-1} y - \sin^{-1} x = \frac{\pi}{3} \quad \text{(Equation 3)} \] ### Step 2: Add Equations 1 and 3 Now, we can add Equation 1 and Equation 3: \[ (\sin^{-1} x + \sin^{-1} y) + (\sin^{-1} y - \sin^{-1} x) = \frac{2\pi}{3} + \frac{\pi}{3} \] This simplifies to: \[ 2\sin^{-1} y = \pi \] Dividing both sides by 2 gives: \[ \sin^{-1} y = \frac{\pi}{2} \] ### Step 3: Solve for \( y \) From \( \sin^{-1} y = \frac{\pi}{2} \), we find: \[ y = \sin\left(\frac{\pi}{2}\right) = 1 \] ### Step 4: Substitute \( y \) back into Equation 1 Now we substitute \( y = 1 \) back into Equation 1 to find \( x \): \[ \sin^{-1} x + \sin^{-1}(1) = \frac{2\pi}{3} \] Since \( \sin^{-1}(1) = \frac{\pi}{2} \), we have: \[ \sin^{-1} x + \frac{\pi}{2} = \frac{2\pi}{3} \] Subtracting \( \frac{\pi}{2} \) from both sides gives: \[ \sin^{-1} x = \frac{2\pi}{3} - \frac{\pi}{2} \] To simplify, we convert \( \frac{\pi}{2} \) to a common denominator: \[ \sin^{-1} x = \frac{4\pi}{6} - \frac{3\pi}{6} = \frac{\pi}{6} \] ### Step 5: Solve for \( x \) Now we find \( x \): \[ x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] ### Conclusion The values we have found are: \[ (x, y) = \left(\frac{1}{2}, 1\right) \] Since there are no other combinations of \( x \) and \( y \) that satisfy both equations, the number of values of \( (x, y) \) is **1**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sin^(-1)x+sin^(-1)y=(pi)/(3) and cos^(-1)x+cos^(-1)y=(pi)/(6), find the values of x and y.

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y is equal to

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to