Home
Class 12
MATHS
tan(cot^(-1)x) is equal to...

`tan(cot^(-1)x)` is equal to

A

`(pi)/(2)-x`

B

`cot(tan^(-1)x)`

C

tanx

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a x b sqrt(1-x^(2)) c) (1)/(x) d) none of these

sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

cos[tan^(-1){sin(cot^(-1)x)}] is equal to

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to

The value of sin cot^(-1)tan cos^(-1)x is equal to:

tan(tan^(-1)x+tan^(-1)y+tan^(-1)z)-cot(cot^(-1)x+cot^(-1)y+cot^(-1)z) is equal to

The solution set of the inequality (tan^(-1)x cot^(-1)x)^(2)+5-5(tan^(-1)x)^(2)cot^(-1)x+(cot^(-1)x)^(2)-5cot^(-1)x+6(tan^(-1)x)^(2)+1lt0 is (m,n) ,the value of cot^(-1)m-cot^(-1)n is equal to (1) -1 (3) Zero

If x gt 0 then the value of sin [cot ^(-1) cos( tan^(-1)x)] is equal to-

If sum_(r=1)^(oo) cot^(-1)(((r+1)^(2))/(2))=tan^(-1)x then x is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to