Home
Class 12
MATHS
If sum(i=1)^(2n) sin^-1 xi = n pi then...

If `sum_(i=1)^(2n) sin^-1 x_i = n pi` then find the value of `sum_(i=1)^(2n) x_i`.

A

n

B

2n

C

`(n(n+1))/(2) `

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)

sum_(i=1)^(2n)sin^(-1)(x_(i))=n pi then the value of sum_(i=1)^(n)cos^(-1)x_(i)+sum_(i=1)^(n)tan^(-1)x_(i)=(A)(n pi)/(4)(B)((2)/(3))n pi(C)((5)/(4))n pi(D)2n pi

the value of sum i^(2n+1!)

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"

If i^(2)=-1 then the value of sum_(n=1)^(200)i^(n) is

If sum_(i)^(n)cos theta_(i)=n, then the value of sum_(i=1)^(n)sin theta_(i)

For any n positive numbers a_(1),a_(2),…,a_(n) such that sum_(i=1)^(n) a_(i)=alpha , the least value of sum_(i=1)^(n) a_(i)^(-1) , is

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to