Home
Class 12
MATHS
cos("sin"^(-1)(1)/(2)+"cos"^(-1)(1)/(3))...

`cos("sin"^(-1)(1)/(2)+"cos"^(-1)(1)/(3))=`

A

`(sqrt(3)+sqrt(8))/(6)`

B

`(-sqrt(3)+sqrt(8))/(6)`

C

`(sqrt(3)-sqrt(8))/(6)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(1/2)+cos^(-1)(-sqrt3/2)=?

Evaluate cos(sin^(-1)(4/5)+cos^(-1)(2/3))

cos[2cos^(-1).(1)/(5)+sin^(-1).(1)/(5)] =

cos^(2)(sin^(-1)(1/6))+sin^(2)(cos^(-1)(1/2))

cos^(-1)((-1)/(2))-2sin^(-1)((1)/(2))+3cos^(-1)((-1)/(sqrt(2)))-4tan^(-1)(-1) equals to

If quad Tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2)) and y=cos[(1)/(2)cos^(-1)((1)/(8))] then

cos [cos^(-1)(-1/2)-sin^(-1)(1/2)]

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1