Home
Class 12
MATHS
If x=(1)/(5), the value of cos(cos^(-1)x...

If `x=(1)/(5)`, the value of `cos(cos^(-1)x+2sin^(-1)x)` is :

A

`-sqrt((24)/(25))`

B

`sqrt((24)/(25))`

C

`-(1)/(5)`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(\cos^{-1}(x) + 2\sin^{-1}(x)) \) given \( x = \frac{1}{5} \). ### Step-by-Step Solution: 1. **Substituting the value of x**: Given \( x = \frac{1}{5} \), we need to evaluate: \[ \cos\left(\cos^{-1}\left(\frac{1}{5}\right) + 2\sin^{-1}\left(\frac{1}{5}\right)\right) \] 2. **Using the identity for cosine of a sum**: We can use the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Here, let \( A = \cos^{-1}\left(\frac{1}{5}\right) \) and \( B = 2\sin^{-1}\left(\frac{1}{5}\right) \). Thus, we have: \[ \cos\left(\cos^{-1}\left(\frac{1}{5}\right) + 2\sin^{-1}\left(\frac{1}{5}\right)\right) = \cos A \cos B - \sin A \sin B \] 3. **Finding \( \cos A \) and \( \sin A \)**: Since \( A = \cos^{-1}\left(\frac{1}{5}\right) \): \[ \cos A = \frac{1}{5} \] To find \( \sin A \), we use the identity \( \sin^2 A + \cos^2 A = 1 \): \[ \sin^2 A = 1 - \left(\frac{1}{5}\right)^2 = 1 - \frac{1}{25} = \frac{24}{25} \] Therefore, \( \sin A = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} = \frac{2\sqrt{6}}{5} \). 4. **Finding \( B = 2\sin^{-1}\left(\frac{1}{5}\right) \)**: To find \( \cos B \) and \( \sin B \), we use the double angle formulas: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] where \( \theta = \sin^{-1}\left(\frac{1}{5}\right) \). We have: \[ \sin B = 2\sin\left(\sin^{-1}\left(\frac{1}{5}\right)\right)\cos\left(\sin^{-1}\left(\frac{1}{5}\right)\right) \] Here, \( \sin\left(\sin^{-1}\left(\frac{1}{5}\right)\right) = \frac{1}{5} \) and \( \cos\left(\sin^{-1}\left(\frac{1}{5}\right)\right) = \sqrt{1 - \left(\frac{1}{5}\right)^2} = \sqrt{\frac{24}{25}} = \frac{2\sqrt{6}}{5} \). Thus: \[ \sin B = 2 \cdot \frac{1}{5} \cdot \frac{2\sqrt{6}}{5} = \frac{4\sqrt{6}}{25} \] For \( \cos B \): \[ \cos B = \cos(2\theta) = 1 - 2\sin^2(\theta) = 1 - 2\left(\frac{1}{5}\right)^2 = 1 - 2\cdot\frac{1}{25} = 1 - \frac{2}{25} = \frac{23}{25} \] 5. **Substituting back into the cosine addition formula**: Now substituting \( \cos A \), \( \sin A \), \( \cos B \), and \( \sin B \): \[ \cos\left(\cos^{-1}\left(\frac{1}{5}\right) + 2\sin^{-1}\left(\frac{1}{5}\right)\right) = \left(\frac{1}{5}\right)\left(\frac{23}{25}\right) - \left(\frac{2\sqrt{6}}{5}\right)\left(\frac{4\sqrt{6}}{25}\right) \] Simplifying this: \[ = \frac{23}{125} - \frac{8 \cdot 6}{125} = \frac{23}{125} - \frac{48}{125} = \frac{23 - 48}{125} = \frac{-25}{125} = -\frac{1}{5} \] Thus, the final answer is: \[ \cos\left(\cos^{-1}\left(\frac{1}{5}\right) + 2\sin^{-1}\left(\frac{1}{5}\right)\right) = -\frac{1}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (cos(sin^(-1)x))^(2)-(sin(cos^(-1)x))^(2) is =

Find the value of cos[cos^-1 x+sin^-1 x] at x =1/5

Evaluate :cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5)

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

If -1<=x,y<=1 such that sin^(-1)x+sin^(-1)y=(pi)/(2), find the value of cos^(-1)x+cos^(-1)y

If -1<=x,y<=1 such that sin^(-1)x+sin^(-1)y=(pi)/(2), find the value of cos^(-1)x+cos^(-1)y

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)