Home
Class 12
MATHS
The number of triple satisfying sin^(-1)...

The number of triple satisfying `sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi` is

A

0

B

2

C

1

D

Infinite

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then

Q.if sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), then

sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = (pi) / (2)

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is :

The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :