Home
Class 12
MATHS
If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+t...

If `x+y+z=xyz`, then `tan^(-1)x+tan^(-1)y+tan^(-1)z=`

A

`pi`

B

`(pi)/(2)`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + y + z = xyz \) and we need to find \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z \), we can follow these steps: ### Step 1: Rewrite the equation Given the equation: \[ x + y + z = xyz \] We can rearrange it as: \[ x + y = xyz - z \] ### Step 2: Define angles Let: \[ \tan^{-1} x = \alpha, \quad \tan^{-1} y = \beta, \quad \tan^{-1} z = \gamma \] Thus, we have: \[ x = \tan \alpha, \quad y = \tan \beta, \quad z = \tan \gamma \] ### Step 3: Use the tangent addition formula Using the tangent addition formula, we know: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Substituting \( x \) and \( y \) gives: \[ \tan(\alpha + \beta) = \frac{x + y}{1 - xy} \] ### Step 4: Substitute \( x + y \) From our rearranged equation \( x + y = xyz - z \), we substitute this into the tangent addition formula: \[ \tan(\alpha + \beta) = \frac{xyz - z}{1 - xy} \] ### Step 5: Relate to \( z \) Now, we can express \( \tan(\alpha + \beta + \gamma) \): \[ \tan(\alpha + \beta + \gamma) = \frac{\tan(\alpha + \beta) + \tan \gamma}{1 - \tan(\alpha + \beta) \tan \gamma} \] Substituting \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta + \gamma) = \frac{\frac{xyz - z}{1 - xy} + z}{1 - \frac{(xyz - z)z}{1 - xy}} \] ### Step 6: Simplify the expression To simplify this expression, we can analyze the condition \( x + y + z = xyz \). This implies that: \[ \tan(\alpha + \beta + \gamma) = 0 \] which means: \[ \alpha + \beta + \gamma = n\pi \quad \text{for some integer } n \] ### Step 7: Conclusion Since we are looking for \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z \), we conclude: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = 0 \] Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If x=2. y=3 , then tan^(-1)x+tan^(-1)y=

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then