Home
Class 12
MATHS
If tan^(-1)x+tan^(-1)y=(pi)/(4), then co...

If `tan^(-1)x+tan^(-1)y=(pi)/(4)`, then `cot^(-1)x+cot^(-1)y=`

A

`(pi)/(2)`

B

`(3pi)/(4)`

C

`pi`

D

`(5pi)/(4) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot^{-1}x + \cot^{-1}y \) given that \( \tan^{-1}x + \tan^{-1}y = \frac{\pi}{4} \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \tan^{-1}x + \tan^{-1}y = \frac{\pi}{4} \] 2. **Use the property of inverse tangent:** We know that: \[ \tan^{-1}x + \tan^{-1}y = \frac{\pi}{4} \implies \tan\left(\tan^{-1}x + \tan^{-1}y\right) = \tan\left(\frac{\pi}{4}\right) \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we can write: \[ \frac{x + y}{1 - xy} = 1 \] 3. **Cross-multiply to simplify:** \[ x + y = 1 - xy \] 4. **Rearranging the equation:** \[ xy + x + y + 1 = 2 \] This can be rewritten as: \[ xy + x + y + 1 - 2 = 0 \implies xy + x + y - 1 = 0 \] 5. **Now, we need to find \( \cot^{-1}x + \cot^{-1}y \):** We use the identity: \[ \cot^{-1}x + \cot^{-1}y = \frac{\pi}{2} - \left(\tan^{-1}x + \tan^{-1}y\right) \] 6. **Substituting the known value:** Since \( \tan^{-1}x + \tan^{-1}y = \frac{\pi}{4} \): \[ \cot^{-1}x + \cot^{-1}y = \frac{\pi}{2} - \frac{\pi}{4} \] 7. **Calculating the final value:** \[ \cot^{-1}x + \cot^{-1}y = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] ### Final Answer: Thus, the value of \( \cot^{-1}x + \cot^{-1}y \) is: \[ \frac{3\pi}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y=(4 pi)/(5), find cot^(-1)x+cot^(-1)y

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

3tan^(-1)x+cot^(-1)x=pi

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

cot(tan^(-1)x+cot^(-1)x)

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

What is the value of tan(tan^(-1)x + tan^(-1)y + tan^(-1)z)-cot(cot^(-1)x + cot^(-1)y + cot^(-1)z) ?

tan^(-1) x +cot^(-1)x =(pi)/(2) holds, when

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to