Home
Class 12
MATHS
The value of tan[(1)/(2)cos^(-1)((sqrt(5...

The value of `tan[(1)/(2)cos^(-1)((sqrt(5))/(3))]` is :

A

`(3+sqrt(5))/(2)`

B

`3+sqrt(5)`

C

`(3-sqrt(5))/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{\sqrt{5}}{3}\right)\right) \), we can follow these steps: ### Step 1: Let \( \theta = \cos^{-1}\left(\frac{\sqrt{5}}{3}\right) \) This means that \( \cos(\theta) = \frac{\sqrt{5}}{3} \). ### Step 2: Use the half-angle identity for tangent We know that: \[ \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} \] So, we can substitute \( \cos(\theta) \) into this identity. ### Step 3: Substitute \( \cos(\theta) \) into the half-angle identity Substituting \( \cos(\theta) = \frac{\sqrt{5}}{3} \): \[ \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \frac{\sqrt{5}}{3}}{1 + \frac{\sqrt{5}}{3}}} \] ### Step 4: Simplify the expression First, simplify the numerator: \[ 1 - \frac{\sqrt{5}}{3} = \frac{3 - \sqrt{5}}{3} \] Now for the denominator: \[ 1 + \frac{\sqrt{5}}{3} = \frac{3 + \sqrt{5}}{3} \] Now substituting these back into the tangent expression: \[ \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{3 - \sqrt{5}}{3}}{\frac{3 + \sqrt{5}}{3}}} = \sqrt{\frac{3 - \sqrt{5}}{3 + \sqrt{5}}} \] ### Step 5: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by \( 3 - \sqrt{5} \): \[ \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{(3 - \sqrt{5})^2}{(3 + \sqrt{5})(3 - \sqrt{5})}} \] Calculating the denominator: \[ (3 + \sqrt{5})(3 - \sqrt{5}) = 9 - 5 = 4 \] Calculating the numerator: \[ (3 - \sqrt{5})^2 = 9 - 6\sqrt{5} + 5 = 14 - 6\sqrt{5} \] Thus, we have: \[ \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{14 - 6\sqrt{5}}{4}} = \frac{\sqrt{14 - 6\sqrt{5}}}{2} \] ### Final Answer The value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{\sqrt{5}}{3}\right)\right) \) is: \[ \frac{\sqrt{14 - 6\sqrt{5}}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let the tangents at point P and R on the parabola y=x^(2) intersects at T. Tangent at point Q (lies in between the points P and R) on the parabola intersect PT and RT at A and B respectively. The value of (TA)/(TP)+(TB)/(TR) is

23.Given 0 Sxs then the value of tan sinsins 2 then the value of ta (A)-I (B) 1 (C) (C)?(D)?

5. Let [(a,b,c),(b,c,a),(c,a,b)] , where a+b+ c>0 and abc=1 .if A^TA=Ithen the value of (a^3+b^3+c^3)/4 is (A)1 (B)2 (C)0 (D) 4

The value of (C_p - C_v) is 1.00 R for a gas sample in state A and is 1.08 R in state B. Let ( p_A, p_B) denote the pressures and (T_A and T_B) denote the temperatures of the states A and B respectively . Most likely

Two gases of molecular masses MA and MB) are at temperatures TA and TB respectively.TAMB=TBMA Which one of the following properties has the same value for both gases? (A) Pressure (B) Kinetic energy (C) RMS velocity (D) Density

if the tangent ta the curve x=a(1+sin theta),y=a(1+cos theta) at theta=(pi)/(3) makes an angle x= axis then alpha

underset( x rarr 0 ) ( "lim")( x tan 2x - 2x ta n x )/(( 1- cos 2x)^(2)) is

If the lower end of ta capillary tube touches a liquid whose angle of contact is 90^@ , then the liquid