Home
Class 12
MATHS
If cot^(-1)x-"cos"^(-1)(y)/(2)=alpha, t...

If `cot^(-1)x-"cos"^(-1)(y)/(2)=alpha`, then `4x^(2)-4xy cos alpha+y^(2)` is equal to :

A

`-4 sin^(2)alpha`

B

`4 sin^(2)alpha`

C

4

D

`2sin2alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \cot^{-1}(x) - \frac{\cos^{-1}(y)}{2} = \alpha \] We need to express \(4x^2 - 4xy \cos(\alpha) + y^2\) in terms of \(x\) and \(y\). ### Step 1: Express \(\cos(\alpha)\) From the equation, we can express \(\alpha\) in terms of \(x\) and \(y\): \[ \alpha = \cot^{-1}(x) - \frac{\cos^{-1}(y)}{2} \] Using the identity for \(\cot^{-1}(x)\): \[ \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \] Thus, we have: \[ \alpha = \frac{\pi}{2} - \tan^{-1}(x) - \frac{\cos^{-1}(y)}{2} \] ### Step 2: Find \(\cos(\alpha)\) Using the cosine of a difference formula: \[ \cos(\alpha) = \cos\left(\frac{\pi}{2} - \tan^{-1}(x) - \frac{\cos^{-1}(y)}{2}\right) \] This can be simplified using the cosine of a sum: \[ \cos(\alpha) = \sin(\tan^{-1}(x)) \cdot \cos\left(\frac{\cos^{-1}(y)}{2}\right) - \cos(\tan^{-1}(x)) \cdot \sin\left(\frac{\cos^{-1}(y)}{2}\right) \] From trigonometric identities: \[ \sin(\tan^{-1}(x)) = \frac{x}{\sqrt{1+x^2}}, \quad \cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}} \] And for \(\cos\left(\frac{\cos^{-1}(y)}{2}\right)\) and \(\sin\left(\frac{\cos^{-1}(y)}{2}\right)\): \[ \cos\left(\frac{\cos^{-1}(y)}{2}\right) = \sqrt{\frac{1+y}{2}}, \quad \sin\left(\frac{\cos^{-1}(y)}{2}\right) = \sqrt{\frac{1-y}{2}} \] Substituting these into the equation for \(\cos(\alpha)\): \[ \cos(\alpha) = \frac{x}{\sqrt{1+x^2}} \cdot \sqrt{\frac{1+y}{2}} - \frac{1}{\sqrt{1+x^2}} \cdot \sqrt{\frac{1-y}{2}} \] ### Step 3: Substitute \(\cos(\alpha)\) into the expression Now we substitute \(\cos(\alpha)\) into the expression \(4x^2 - 4xy \cos(\alpha) + y^2\): \[ 4x^2 - 4xy \left( \frac{x \sqrt{1+y}}{\sqrt{2(1+x^2)}} - \frac{\sqrt{1-y}}{\sqrt{2(1+x^2)}} \right) + y^2 \] ### Step 4: Simplify the expression This expression can be simplified, but it may require algebraic manipulation. The goal is to combine like terms and factor if possible. ### Final Result After simplification, we can conclude that: \[ 4x^2 - 4xy \cos(\alpha) + y^2 = (2x - y)^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x-cos^(-1)((y)/(2))=alpha then 4x^(2)-4xy cos alpha+y^(2)=

If cos^(-1)x-"cos"^(-1)y/2=alpha , then 4x^(2)-4xycos alpha+y^(2) is equal to

If cos^(-1) x - cos^(-1). y/2= alpha ", then " 4x^(2) - 4xy cos alpha + y^(2) is equal to

If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal to 4 (b) 2sin^2alpha (c) -4sin^2alpha (d) 4sin^2alpha

If cos^-1 x- cos^-1 (y/2)=alpha, then 4x^2-4xycosalpha+y^2 is equal to (A) 4 (B) 2sin2alpha (C) -4sin^2alpha (D) 4sin^2alpha