Home
Class 12
MATHS
tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is e...

`tan^(-1)((1)/(4))+tan^(-1)((2)/(9))` is equal to :

A

`(1)/(2) cos^(-1)((3)/(5))`

B

`(1)/(2) sin^(-1)((3)/(5))`

C

`(1)/(2) tan^(-1)((3)/(5))`

D

`tan^(-1)((1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) \), we can use the identity for the sum of inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \quad \text{if } xy < 1 \] ### Step 1: Identify \(x\) and \(y\) Let: - \( x = \frac{1}{4} \) - \( y = \frac{2}{9} \) ### Step 2: Check the condition \(xy < 1\) Calculate \(xy\): \[ xy = \left(\frac{1}{4}\right) \left(\frac{2}{9}\right) = \frac{2}{36} = \frac{1}{18} \] Since \( \frac{1}{18} < 1 \), we can use the identity. ### Step 3: Apply the identity Now, apply the identity: \[ \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \tan^{-1}\left(\frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} \cdot \frac{2}{9}}\right) \] ### Step 4: Calculate the numerator Find a common denominator for the numerator: \[ \frac{1}{4} + \frac{2}{9} = \frac{9}{36} + \frac{8}{36} = \frac{17}{36} \] ### Step 5: Calculate the denominator Now calculate the denominator: \[ 1 - \frac{1}{4} \cdot \frac{2}{9} = 1 - \frac{1}{18} = \frac{18}{18} - \frac{1}{18} = \frac{17}{18} \] ### Step 6: Combine the results Now substitute back into the formula: \[ \tan^{-1}\left(\frac{\frac{17}{36}}{\frac{17}{18}}\right) = \tan^{-1}\left(\frac{17 \cdot 18}{36 \cdot 17}\right) = \tan^{-1}\left(\frac{18}{36}\right) = \tan^{-1}\left(\frac{1}{2}\right) \] ### Final Result Thus, we have: \[ \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \tan^{-1}\left(\frac{1}{2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is tan^(-1)((1)/(4))+tan^(-1)((3)/(5)) equal to ?

What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to ?

What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to?

"sin"^(-1)(4)/(5)+2"tan"^(-1)(1)/(3) is equal to

x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) What is x equal to?

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

"tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(3^(3))) + ....oo is equal to

tan ^ (- 1) ((1) / (4)) + tan ^ (- 1) ((2) / (9)) = (1) / (2) tan ^ (- 1) ((4) / (3))