Home
Class 12
MATHS
sin^(-1)((2x)/(1+x^(2)))=2 tan^(-1)x for...

`sin^(-1)((2x)/(1+x^(2)))=2 tan^(-1)x` for :

A

`|x| ge 1`

B

`x ge 0`

C

`|x| le 1`

D

all `x in R`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the absolute value of lim_(x rarr1^(+))(4(x-1))/(sin^(-1)((2x)/(1+x^(2)))-2tan^(-1)x)

Let f(x) = sin^(-1)((2x)/(1+x^(2))) Statement I f'(2) = - 2/5 and Statement II sin^(-1)((2x)/(1 +x^(2))) = pi - 2 tan^(-1) x, AA x gt 1

If log_(2)xge0 then log_(1//pi){sin^(-1)((2x)/(1+x^(2)))+2tan^(-1)x} is equal

Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 If cos^(-1). (6x)/(1 + 9x^(2)) = - pi/2 + 2 tan^(-1) 3x" , then " x in

If log_(2)^(x)<=0 then log_((1)/(pi)){sin^(-1)((2x)/(1+x^(2)))+2Tan^(-1)x}=

Show that sin^(-1)(2x)/(1+x^(2))=[(2tan^(-1)x,"if",|x|le1),(pi-2tan^(-1)x,"if",xgt1),(-(pi+2tan^(-1)x),"if",xlt-1):}

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))), where '-1

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)