Home
Class 12
MATHS
If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2...

If `cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2)`, then `x+y+z=`

A

`xy+z`

B

`x+yz`

C

`xz+y`

D

xyz

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2),x,y,z>0 and xy<1 then x+y+z is also equal to (1)/(x)+(1)/(y)+(1)/(z)(b)xyzxy+yz+zx(d) none of these

If cot^(-1)x + cot^(-1)y + cot^(-1)z = pi , prove that xy + yz + zx = 1 .

If sin^(-1)x+cot^(-1)(1/2)=(pi)/(2), " then : " x=

If cot^(-1)x + cot^(-1)y = tan^(-1)c, then: x+y=

If cot^(-1)x+cot^(-1)y=cot^(-1)c," then "(dy)/(dx)=

cot(tan^(-1)x+cot^(-1)x)

If y = (cot^(-1) x)^(2) then

Solve : cot^(-1)2x+cot^(-1)3x=(pi)/(4)

If: cot^(-1)alpha + cot^(-1)beta = cot^(-1) x , then: x=

If x!=n and cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1) then x=