Home
Class 12
MATHS
The sum of solutions of the equation 2 ...

The sum of solutions of the equation `2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2)` is :

A

0

B

-1

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \sin^{-1} \sqrt{x^2 + x + 1} + \cos^{-1} \sqrt{x^2 + x} = \frac{3\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation We can rewrite the equation as: \[ 2 \sin^{-1} \sqrt{x^2 + x + 1} = \frac{3\pi}{2} - \cos^{-1} \sqrt{x^2 + x} \] ### Step 2: Use the identity for inverse trigonometric functions Using the identity \( \cos^{-1}(y) + \sin^{-1}(y) = \frac{\pi}{2} \), we can express \( \cos^{-1} \sqrt{x^2 + x} \) in terms of \( \sin^{-1} \): \[ \cos^{-1} \sqrt{x^2 + x} = \frac{\pi}{2} - \sin^{-1} \sqrt{x^2 + x} \] ### Step 3: Substitute back into the equation Substituting this into our equation gives: \[ 2 \sin^{-1} \sqrt{x^2 + x + 1} = \frac{3\pi}{2} - \left(\frac{\pi}{2} - \sin^{-1} \sqrt{x^2 + x}\right) \] This simplifies to: \[ 2 \sin^{-1} \sqrt{x^2 + x + 1} = \pi + \sin^{-1} \sqrt{x^2 + x} \] ### Step 4: Isolate the inverse sine terms Rearranging the equation, we have: \[ 2 \sin^{-1} \sqrt{x^2 + x + 1} - \sin^{-1} \sqrt{x^2 + x} = \pi \] ### Step 5: Let \( y = \sin^{-1} \sqrt{x^2 + x} \) Let \( y = \sin^{-1} \sqrt{x^2 + x} \). Then we can express \( \sqrt{x^2 + x + 1} \) in terms of \( y \): \[ \sqrt{x^2 + x} = \sin y \implies x^2 + x = \sin^2 y \implies x^2 + x - \sin^2 y = 0 \] Using the quadratic formula, we find: \[ x = \frac{-1 \pm \sqrt{1 + 4\sin^2 y}}{2} \] ### Step 6: Substitute back into the equation Now substituting back into the equation gives: \[ 2 \sin^{-1} \sqrt{\frac{1 + 4\sin^2 y}{4}} - y = \pi \] This can be simplified further, but we need to find the values of \( y \) that satisfy this equation. ### Step 7: Solve for \( y \) This equation can be solved numerically or graphically to find the values of \( y \) that satisfy it. ### Step 8: Find the corresponding \( x \) values Once we have the values of \( y \), we can substitute back to find the corresponding \( x \) values using: \[ x = \frac{-1 \pm \sqrt{1 + 4\sin^2 y}}{2} \] ### Step 9: Sum the solutions Finally, we sum the solutions for \( x \) obtained from the values of \( y \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the solution of the equation 2sin^(-1)sqrt(x^(2)+x+1)+cos^(-1)sqrt(x^(2)+x)=(3 pi)/(2) is 0(b)-1( c) 1 (d) 2

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is

Number of integral solutions of the equation 2sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=3(pi)/(2) is

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-5x+5)+cos^(-1)sqrt(4x-x^(2)-3)=pi is/are

Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2 is:

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)