Home
Class 12
MATHS
If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3...

If `cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi,` then `xy + yz +zx` is equal to

A

-3

B

0

C

3

D

-1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3 pi, then xy+yz+zx is equal to

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

If cot^(-1)x + cot^(-1)y + cot^(-1)z = pi , prove that xy + yz + zx = 1 .

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If : cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, " then :" x (y+z)+y(z+x)+z(x+y)=