Home
Class 12
MATHS
If cos^(-1)((x)/(3))+cos^(-1)((y)/(2))=(...

If `cos^(-1)((x)/(3))+cos^(-1)((y)/(2))=(theta)/(2)`, then the value of `4x^(2)-12xy cos((theta)/(2))+9y^(2)` is equal to :

A

`18(1+cos theta)`

B

`18(1-cos theta)`

C

`36(1+cos theta)`

D

`36(1-cos theta)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is

If cos^(-1)((x)/(2))+cos^(-1)((y)/(3))=theta, prove that 9x^(2)-12xy cos theta+4y^(2)=36sin^(2)theta

If cos^(-1)(x/a)+cos^(-1)(y/b)=theta ,then the value of sqrt((x^(2))/(a^(2))+(y^(2))/(b^(2))-(2xy)/(ab)cos theta) is equal to

cos^(-1)x-cos^(-1)(y/2)=alpha,x in[-1,1],y in[-2,2] then the value of 4x^(2)-4xy cos alpha+y^(2) is

If cos^(-1)((x)/(2))+cos^(-1)((y)/(3))=alpha then prove that 9x^(2)-12xy cos alpha+4y^(2)=36sin^(2)alpha

If cos ^(-1) .(x)/(a)+ cos ^(-1). (y)/(b) = theta then prove that (x^(2))/(a^(2)) -(2xy)/(ab) . cos theta+ (y^(2))/(b^(2)) = sin ^(2) theta .

If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos theta+4y^(2)=36sin^(2) theta