Home
Class 12
MATHS
The formula "cos"^(-1)(1-x^(2))/(1+x^(2)...

The formula `"cos"^(-1)(1-x^(2))/(1+x^(2))=2tan^(-1)x` holds only for :

A

`x in R`

B

`|x| le 1`

C

`x in (-1, 1)`

D

`x in [0, +oo]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2\tan^{-1}(x)\) and determine the values or range of \(x\) for which this holds, we can follow these steps: ### Step 1: Substitute \(x\) with \(\tan(\theta)\) Let \(x = \tan(\theta)\). Then we can rewrite the equation as: \[ \cos^{-1}\left(\frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)}\right) = 2\tan^{-1}(\tan(\theta)) \] ### Step 2: Use the identity for \(\cos(2\theta)\) Recall the trigonometric identity: \[ \cos(2\theta) = \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} \] Thus, we can rewrite the left-hand side: \[ \cos^{-1}(\cos(2\theta)) = 2\theta \] ### Step 3: Determine the range for \(2\theta\) The equation \(\cos^{-1}(\cos(2\theta)) = 2\theta\) holds true when: \[ 2\theta \in [0, \pi] \] This means: \[ 0 \leq 2\theta \leq \pi \] Dividing by 2 gives: \[ 0 \leq \theta \leq \frac{\pi}{2} \] ### Step 4: Relate \(\theta\) back to \(x\) Since \(\theta = \tan^{-1}(x)\), we can express the range of \(\theta\) in terms of \(x\): \[ 0 \leq \tan^{-1}(x) \leq \frac{\pi}{2} \] ### Step 5: Solve for \(x\) The range of \(\tan^{-1}(x)\) implies: \[ x \geq 0 \] Thus, \(x\) must be in the range: \[ x \in [0, \infty) \] ### Final Answer The formula \(\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2\tan^{-1}(x)\) holds only for: \[ x \in [0, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)((1-x^(2))/(1+x^(2)))w.r.t. tan^(-1)x

Define: cos^(-1)((1-x^(2))/(1+x^(2))) in terms of tan^(-1)x

if cos^(-1)((1-a^(2))/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=2tan^(-1)x then x is:

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

Show that : cos(2 tan^(-1)x) = (1-x^(2))/(1+x^(2))

(1)/((1)/(cos^(2)x(1-tan x)^(2)))

The set of vlues of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x holds is