Home
Class 12
MATHS
tan^2(sin^(- 1)x)>1...

`tan^2(sin^(- 1)x)>1`

A

`(-1, (-1)/(sqrt(2))) cup ((1)/(sqrt(2)), 1 ) `

B

`(-(1)/(sqrt(2)), (1)/(sqrt(2))) ~ {0}`

C

` (-1,1) ~ {0} `

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The set of value of x, satisfying the equation tan^(2)(sin^(-1)x) gt 1 is :

STATEMENT-1 : If tan^2 (sin^-1x) > 1 then x in(-1-1/sqrt2)uu(1/sqrt(2).1).STATEMENT-2 : The number of positive integral solution of tan^-1 1/y+cot^-1(1/x)=cot^-1(1/3), where x/y < 1, is 2. STATEMENT -3 : If sin^-1 x=-cos^-1 sqrt(1-x^2) and sin^-1 y=cos^-1 sqrt(1-y^2), then the exact range of (tan^-1 x+ tan6-1 y) is [-pi/4,pi/4].

tan ^ (2) (sin ^ (- 1) x)> 1

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

If 0lexle1 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

Simplity tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)(1-y^(2))/(1+y^(2))} , if xgtygt1 .

Lt_(x rarr(1)/(sqrt(2)))(x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))=

Prove that tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))}=(x+y)/(1-xy) , where |x| lt 1,y gt 0 and xy lt 1 .

The value of lim_(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))" is "