Home
Class 12
MATHS
tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+...

` tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) ` is :

A

`(2a)/(b) `

B

` (a)/(b) `

C

` (b)/(a) `

D

`(2b)/(a) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan\left(\frac{\pi}{4} + \frac{1}{2} \cos^{-1}\left(\frac{a}{b}\right)\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2} \cos^{-1}\left(\frac{a}{b}\right)\right) \), we will follow these steps: ### Step 1: Substitute the Inverse Cosine Let \( \theta = \cos^{-1}\left(\frac{a}{b}\right) \). Then, we have: \[ \cos \theta = \frac{a}{b} \] ### Step 2: Rewrite the Expression The expression can be rewritten as: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \] ### Step 3: Apply the Tan Addition and Subtraction Formulas Using the formulas for tangent of a sum and difference: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] For \( a = \frac{\pi}{4} \) and \( b = \frac{\theta}{2} \), we know that \( \tan\left(\frac{\pi}{4}\right) = 1 \). Thus: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} \] \[ \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{1 - \tan\left(\frac{\theta}{2}\right)}{1 + \tan\left(\frac{\theta}{2}\right)} \] ### Step 4: Combine the Two Tangent Expressions Now, we combine the two results: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} + \frac{1 - \tan\left(\frac{\theta}{2}\right)}{1 + \tan\left(\frac{\theta}{2}\right)} \] ### Step 5: Simplify the Expression Let \( x = \tan\left(\frac{\theta}{2}\right) \). Then, we have: \[ \frac{(1 + x)(1 + x) + (1 - x)(1 - x)}{(1 - x)(1 + x)} = \frac{(1 + x)^2 + (1 - x)^2}{1 - x^2} \] Expanding the numerator: \[ (1 + 2x + x^2) + (1 - 2x + x^2) = 2 + 2x^2 \] Thus, we have: \[ \frac{2 + 2x^2}{1 - x^2} = \frac{2(1 + x^2)}{1 - x^2} \] ### Step 6: Use the Cosine Double Angle Identity Recall that: \[ \cos(2x) = \frac{1 - \tan^2 x}{1 + \tan^2 x} \] So we can express this as: \[ \frac{2}{\cos(\theta)} \] Since \( \cos \theta = \frac{a}{b} \), we have: \[ \frac{2}{\frac{a}{b}} = \frac{2b}{a} \] ### Final Answer Thus, the final answer is: \[ \frac{2b}{a} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan((pi)/(4)+(1)/(2)cos^(-1)((a)/(b)))+tan((pi)/(4)-(1)/(2)cos^(-1)((a)/(b)))=(2b)/(a)

Prove the following: tan[(pi)/(4)+(1)/(2)cos^(-1)((a)/(b))]+tan[(pi)/(4)-(1)/(2)cos^(-1)((a)/(b))]=(2b)/(a)

Prove that: tan^(-1){(pi)/(4)+(1)/(2)(cos^(-1)a)/(b)}+tan{(pi)/(4)-(1)/(2)(cos^(-1)a)/(b)}=(2b)/(a)

prove that tan ((pi) / (4) + (1) / (2) cos ^ (- 1) ((a) / (b))) + tan ((pi) / (4) - (1) / (2) cos ^ (- 1) ((a) / (b))) = (b) / (a) cos ^ (- 1) ((cos x + cos y) / (1 + cos x cos y) ) = 2tan ^ (- 1) ((tan x) / (2) (tan y) / (2))

tan((pi)/(4)+(1)/(2)cos^(-1)x)+tan((pi)/(4)-(1)/(2)cos^(-1)x),x!=0 is equal to

Prove that: tan[(pi)/(4)+(1)/(2) tan^(-1)((a)/(b))]+tan[(pi)/(4)-(1)/(2)tan^(-1)((a)/(b))]=(2sqrt(a^(2)+b^(2)))/(b)

Find the number of solution of the equation ((pi)/(4)+(1)/(2)cos^(-1)x)+tan((pi)/(4)-(1)/(2)cos^(-1)x)=1

Prove that tan(pi/4 +1/2 cos^(-1) (a/b)) + tan^(-1) (pi/4 -1/2 cos^(-1) (a/b)) =2b/a

tan((pi)/(4)+(1)/(2)cos^(-1)x)+tan((pi)/(4)-(1)/(2)cos^(-1)x),x!=0 is equal to x( b) 2x( c) (2)/(x) (d) none of these