Home
Class 12
MATHS
sec^-1(sinx) is real if...

`sec^-1(sinx)` is real if

A

` x in (-oo, oo) `

B

` x in [-1,1]`

C

` x = (2n +1)(pi)/(2), n in I `

D

` x= n pi, n in Z`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

sec^(-1)(sin x) is real if

inte^(tanx)(sec^(2)x+sec^(3)x sinx)dx is equal to

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

Among (i) lim_(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim_(xtooo) sec^(-1)((sinx)/(x)).

int x sinx sec^(3)x dx is equal to

If y+cosx = sinx has a real solution , then :

(cosx)/(1+sinx)+(1+sinx)/(cosx) is equal to: (cosx)/(1+sinx)+(1+sinx)/(cosx) किसके बराबर है: