Home
Class 12
MATHS
The number of positive integral solution...

The number of positive integral solutions of ` tan^(-1)x + cot^(-1)y= tan^(-1)3 ` is :

A

one

B

two

C

three

D

four

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of positive integral solutions of tan ^(-1)x+cot^(-1)y=tan^(-1)3

An integral solution of the equation tan^(-1)x+tan^(-1)(1//y)=tan^(-1)3 is

STATEMENT-1 : If tan^2 (sin^-1x) > 1 then x in(-1-1/sqrt2)uu(1/sqrt(2).1).STATEMENT-2 : The number of positive integral solution of tan^-1 1/y+cot^-1(1/x)=cot^-1(1/3), where x/y < 1, is 2. STATEMENT -3 : If sin^-1 x=-cos^-1 sqrt(1-x^2) and sin^-1 y=cos^-1 sqrt(1-y^2), then the exact range of (tan^-1 x+ tan6-1 y) is [-pi/4,pi/4].

Find the number of positive integral solution of the equation tan^(-1)x+cos^(-1)(y)/(sqrt(1+y^(2)))=sin^(-1)((3)/(sqrt(10))) .

Find the number of positive integral solution of the equation tan^(-1)x+(cos^(-1)y)/(sqrt(1+y^(2)))=(sin^(-1)3)/(sqrt(10))

The number of real solution of equation tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x) is

cot(tan^(-1)x+cot^(-1)x)

If cot^(-1)x + cot^(-1)y = tan^(-1)c, then: x+y=

The number of positive integral pairs satisfying the equation tan^(-1)a+tan^(-1)b=tan^(-1)3