Home
Class 12
MATHS
If 2tan^(-1)x+sin^(-1)(2x)/(1+x^2) is in...

If `2tan^(-1)x+sin^(-1)(2x)/(1+x^2)` is independent of `x ,` then `x >1` (b) `x<-1` (c) `0

A

` x in [ -1, +oo) `

B

` x in [-1, 1] `

C

` x in (-oo, -1] cup [1, oo) `

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2tan^(-1)x+sin^(-1)(2x)/(1+x^(2)) is independent of x then x>1-1

If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is independent of ' x ' then (a)x in (-1,1) (b) x in (-oo,-1) (c)x in [1,oo) (d) x in (0,1)

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1

The complete set of values of x for which 2 tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) is independent of x is :

Let f(x) = 2 tan^(-1)x + "sin"^(-1) (2x)/(1 + x^(2)) then

If sin^(-1) ((4x)/(x^(2) + 4)) + 2 tan^(-1) (-(x)/(2)) is independent of x, find the value of x

Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))

If sin^(-1)((4x)/(x^(2)+4))+2tan^(-1)(-(x)/(2)) is independent of x, find the values of x.

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-1)x (b) 0 (c) pi/2 (d) pi