Home
Class 12
MATHS
Range of the function f (x) = cos^-1 (-...

Range of the function `f (x) = cos^-1 (-{x})`, where `{.}` is fractional part function, is:

A

` ((pi)/(2), pi)`

B

` ((pi)/(2), pi]`

C

` [(pi)/(2), pi)`

D

`(0, (pi)/(2)] `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

Range of the function f(x)= x cos( 1/x), xgt1

Domain of the function f(x)=log_(e)cos^(-1){sqrt(x)}, where {.} represents fractional part function

Find the range of f(x)=x-{x} , where {.} is the fractional part function.

The function f(x)= cos ""(x)/(2)+{x} , where {x}= the fractional part of x , is a

Statement - 1: The function f(x) = {x}, where {.} denotes the fractional part function is discontinuous a x = 1 Statement -2: lim_(x->1^+) f(x)!= lim_(x->1^+) f(x)

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

Domain of function f(x)=ln(x), where {} represents fractional part function.