Home
Class 12
MATHS
The value of sum(m=1)^(n) "tan"^(-1)((...

The value of ` sum_(m=1)^(n) "tan"^(-1)((2m)/(m^(4) + m^(2) +2 )) ` is :

A

` tan^(-1)(n^(2) +n) `

B

` "tan"^(-1)((n^(2)+n +1)/(n^(2) +n + 2))`

C

` "tan"^(-1)((n)/(n+1))`

D

` "tan"^(-1)((n^(2) +n)/(n^(2) + n + 2)) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ S = \sum_{m=1}^{n} \tan^{-1}\left(\frac{2m}{m^4 + m^2 + 2}\right) \] ### Step 1: Simplifying the Argument of the Inverse Tangent First, we simplify the expression inside the summation: \[ \tan^{-1}\left(\frac{2m}{m^4 + m^2 + 2}\right) \] We can rewrite the denominator: \[ m^4 + m^2 + 2 = m^4 + 2 + m^2 = (m^2 + 1)^2 + 1 - m^2 \] This gives us: \[ \tan^{-1}\left(\frac{2m}{(m^2 + 1)^2 + 1 - m^2}\right) \] ### Step 2: Using the Addition Formula for Inverse Tangent We can express the argument in a form suitable for the inverse tangent subtraction formula: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy} \] Let: \[ x = m^2 + m + 1 \quad \text{and} \quad y = m^2 - m + 1 \] Then: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{(m^2 + m + 1) - (m^2 - m + 1)}{1 + (m^2 + m + 1)(m^2 - m + 1)}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{2m}{1 + (m^2 + 1)^2 - m^2}\right) \] ### Step 3: Rewriting the Summation Now we can rewrite the summation: \[ S = \sum_{m=1}^{n} \left(\tan^{-1}(m^2 + m + 1) - \tan^{-1}(m^2 - m + 1)\right) \] ### Step 4: Telescoping Series This summation is telescoping: \[ S = \left[\tan^{-1}(2) - \tan^{-1}(1)\right] + \left[\tan^{-1}(3) - \tan^{-1}(2)\right] + \ldots + \left[\tan^{-1}(n^2 + n + 1) - \tan^{-1}(n^2 - n + 1)\right] \] The intermediate terms cancel out, leaving us with: \[ S = \tan^{-1}(n^2 + n + 1) - \tan^{-1}(1) \] ### Step 5: Final Result Since \(\tan^{-1}(1) = \frac{\pi}{4}\), we have: \[ S = \tan^{-1}(n^2 + n + 1) - \frac{\pi}{4} \] Thus, the final value of the summation is: \[ S = \tan^{-1}(n^2 + n + 1) - \frac{\pi}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(m=1)^(oo)tan^(-1)((2m)/(m^(4)+m^(2)+2)) is

Prove that: sum_(m=1)^(n)tan^(-1)((2m)/(m^(4)+m^(2)+2))=tan^(-1)((n^(2)+n)/(n^(2)+n+2))

sum_(m=0)^(oo)(1)/(2^(m))(x-1)^(2m)

What is the value of tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n)) ?