Home
Class 12
MATHS
If the mapping f(x)=ax+b, agt0 maps [-1,...

If the mapping `f(x)=ax+b, agt0` maps `[-1,1] onto [0,2] then [cot^-1 7+cot^-1 8+cot^-1 18]=` (A) `f(1)` (B) `f(0)` (C) `f(2)` (D) `f(-1)`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the mapping f(x)=ax+b, a>0 maps [-1,1] on to [0,2] then cot[cot^(-1)(7)+cot^(-1)(8)+cot^(-1)(18)] is equal to

Statement 1. If the mapping f(x)=x+b,agt0 maps[-1,1] onto [0,2], then f(x)=11+x , Stastement 2. cot(cot^-1 7+cot^-2 8+cot^-1 18)=3 (A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Statement 2 is true

If the mapping f(x)=ax+b,a lt0 and maps [-1, 1] onto [0, 2] , then for all values of theta, A=cos^(2) theta + sin^(4) theta is such that

Let f(x) be a linear function which maps [-1, 1] onto [0, 2], then f(x) can be

The range of cot^(-1)x is F

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

Let f(x)=x^3-3(a-2)x^2+3ax+7 and f(x) is increasing in (0,1] and decreasing is [1,5) , then roots of the equation (f(x)-14)/((x-1)^2)=0 is (A) 1 (B) 3 (C) 7 (D) -2

If a=int_(1/2)^2 1/x cot^7(x-1/x)dx , then (A) a=0 (B) 0ltalt1 (C) agt0 (D) none of these