Home
Class 12
MATHS
Number of solutions of the equation tan...

Number of solutions of the equation `tan^(-1)((1)/(a-1))=tan^(-1)((1)/(x))+tan^(-1)((1)/(a^(2)-x+1))` is :

A

One

B

Two

C

Three

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{1}{a-1}\right) = \tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{a^2 - x + 1}\right), \] we can use the identity for the sum of inverse tangents: \[ \tan^{-1}(u) + \tan^{-1}(v) = \tan^{-1}\left(\frac{u + v}{1 - uv}\right), \] provided that \(uv < 1\). ### Step 1: Apply the identity Let \(u = \frac{1}{x}\) and \(v = \frac{1}{a^2 - x + 1}\). Then, we can rewrite the right-hand side: \[ \tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{a^2 - x + 1}\right) = \tan^{-1}\left(\frac{\frac{1}{x} + \frac{1}{a^2 - x + 1}}{1 - \frac{1}{x(a^2 - x + 1)}}\right). \] ### Step 2: Simplify the right-hand side Calculating \(u + v\): \[ u + v = \frac{1}{x} + \frac{1}{a^2 - x + 1} = \frac{(a^2 - x + 1) + x}{x(a^2 - x + 1)} = \frac{a^2 + 1}{x(a^2 - x + 1)}. \] Now, calculating \(1 - uv\): \[ uv = \frac{1}{x(a^2 - x + 1)} \quad \text{thus} \quad 1 - uv = 1 - \frac{1}{x(a^2 - x + 1)} = \frac{x(a^2 - x + 1) - 1}{x(a^2 - x + 1)}. \] ### Step 3: Combine the results Now we can substitute these into the identity: \[ \tan^{-1}\left(\frac{\frac{a^2 + 1}{x(a^2 - x + 1)}}{\frac{x(a^2 - x + 1) - 1}{x(a^2 - x + 1)}}\right) = \tan^{-1}\left(\frac{(a^2 + 1)}{x(a^2 - x + 1) - 1}\right). \] ### Step 4: Set the two sides equal Now we have: \[ \tan^{-1}\left(\frac{1}{a-1}\right) = \tan^{-1}\left(\frac{a^2 + 1}{x(a^2 - x + 1) - 1}\right). \] Taking the tangent of both sides gives: \[ \frac{1}{a-1} = \frac{a^2 + 1}{x(a^2 - x + 1) - 1}. \] ### Step 5: Cross-multiply and simplify Cross-multiplying gives: \[ 1 \cdot (x(a^2 - x + 1) - 1) = (a^2 + 1)(a - 1). \] ### Step 6: Solve for \(x\) This leads to a quadratic equation in \(x\). The number of solutions to this equation can be determined by the discriminant. ### Step 7: Determine the number of solutions The discriminant of the quadratic equation will tell us how many real solutions exist. If the discriminant is positive, there are two solutions; if it is zero, there is one solution; and if it is negative, there are no solutions. ### Conclusion Thus, the number of solutions to the original equation is determined by the discriminant of the resulting quadratic equation. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

Arithmetic mean of the non-zero solutions of the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)((2)/(x^(2)))

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is