Home
Class 12
MATHS
It is given that A=(tan^(-1)x)^(3)+(cot^...

It is given that `A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3)` where `x gt 0` and `B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2)` where `t in [0, (1)/(sqrt(2))]`, and `sin^(-1)x+cos^(-1)x=(pi)/(2)` for `-1 le x le 1` and `tan^(-1)x +cot^(-1)x=(pi)/(2)` for `x in R`.
The maximum value of B is :

A

`(pi^(2))/(8)`

B

`(pi^(2))/(16)`

C

`(pi^(2))/(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The interval in which A lies is :

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . If least value of A is lambda and maximum value of B is mu , then cot^(-1) cot((lambda-mu pi)/(mu))=

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1

If tan^(-1)x+sin^(-1)x=-(2 pi)/(3) then the value of cos^(-1)x+cot^(-1)x is equal to

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Solve for x : i) cos(sin^(-1)x)=1/2 ii) tan^(-1)x=sin^(-1)1/sqrt(2) iii) sin^(-1)x-cos^(-1)x=pi/6

If 0