Home
Class 12
MATHS
It is given that A=(tan^(-1)x)^(3)+(cot^...

It is given that `A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3)` where `x gt 0` and `B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2)` where `t in [0, (1)/(sqrt(2))]`, and `sin^(-1)x+cos^(-1)x=(pi)/(2)` for `-1 le x le 1` and `tan^(-1)x +cot^(-1)x=(pi)/(2)` for `x in R`.
If least value of A is `lambda` and maximum value of B is `mu` , then `cot^(-1) cot((lambda-mu pi)/(mu))=`

A

`(pi)/(8)`

B

`-(pi)/(8)`

C

`(7pi)/(8)`

D

`-(7pi)/(8)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The maximum value of B is :

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The interval in which A lies is :

tan^(-1) x +cot^(-1)x =(pi)/(2) holds, when

prove that tan^(-1)x+cot^(-1)x=pi/2

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

Find the value of x where tan^(-1)3+cot^(-1)x=(pi)/(2)

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

If sin^(-1)x+cot^(-1)(1/2)=(pi)/(2), " then : " x=

Solve for x : cot^(-1)x-cot^(-1)(x+2)=pi/(12) , where x >0