Home
Class 12
MATHS
If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sq...

If `sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0,` then the value of `2sec^(-1)(x/2) + sin^(-1)(x/2)` is equal to

A

`-(3pi)/(2)`

B

`(3pi)/(2)`

C

`-(pi)/(2)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

intdx/(sqrt(1-x^2)(sin^-1x)^2) is equal to

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

If sqrt((sec^(2)A-1))=x , then the value of x is

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi