Home
Class 12
MATHS
The value of a for which a x^2+sin^(-1)(...

The value of `a` for which `a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1` has a real solution is `pi/2` (b) `-pi/2` (c) `2/pi` (d) `-2/pi`

A

`-(2)/(pi)`

B

`(2)/(pi)`

C

`-(pi)/(2)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of a for which ax^(2)+sin^(-1)(x^(2)-2x+2)+cos^(-1)(x^(2)-2x+2)=0 has a real solution is (pi)/(2)(b)-(pi)/(2)(c)(2)/(pi)(d)-(2)/(pi)

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

For the equation cos^(-1)x+cos^(-1)2x+pi=0 ,the number of real solution is (A)1(B) 2 (C) 0 (D) oo

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

The range of sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)], where [.] denotes the greatest integer function,is {(pi)/(2),pi}(b){pi}(c){(pi)/(2)}(d) none of these

The equation 2 sin^(2) (pi/2 cos^(2) x)=1-cos (pi sin 2x) is safisfied by

int_(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dx has the value