Home
Class 12
MATHS
The sum of the infinte series sin^(-1)(1...

The sum of the infinte series `sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))`

A

`(pi)/(8)`

B

`(pi)/(4)`

C

`(pi)/(2)`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinite series "sin"^(-1)((1)/(sqrt2))+"sin"^(-1)((sqrt2-1)/(sqrt6))+"sin"^(-1)((sqrt3-sqrt2)/(sqrt12))+…+…+"sin"^(-1)((sqrtn-sqrt((n-1)))/(sqrt(n(n+1))))+… is

Q.29 Find the sum of the series sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(65)))cdots

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

The sum of n terms of the series (1)/(sqrt(1)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+... is

sin^(-1){cot(sin^(-1)(sqrt((2-sqrt(3))/(4))+cos^(-1)((sqrt(12))/(4))+sec^(-1)sqrt(2))}

The sum to n terms of the series (1)/(sqrt(7)+sqrt(10))+(1)/(sqrt(10)+sqrt(13))+(1)/(sqrt(13)+sqrt(16))+... is

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

The sum n terms of the series (1)/(sqrt(1)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+(1)/(sqrt(5)+sqrt(7))+... is sqrt(2n+1) (b) (1)/(2)sqrt(2n+1)(c)(1)/(2)sqrt(2n+1)-1(d)(1)/(2){sqrt(2n+1)-1}