Home
Class 12
MATHS
The number of solutions for the equation...

The number of solutions for the equation `sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi` is :

A

1

B

2

C

3

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-5x+5)+cos^(-1)sqrt(4x-x^(2)-3)=pi is/are

Number of integral solutions of the equation 2sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=3(pi)/(2) is

The sum of the solution of the equation 2sin^(-1)sqrt(x^(2)+x+1)+cos^(-1)sqrt(x^(2)+x)=(3 pi)/(2) is 0(b)-1( c) 1 (d) 2

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2 is: