Home
Class 12
MATHS
2 tan ( tan^(-1)(x)+ tan^(-1)(x^(3))) " ...

`2 tan ( tan^(-1)(x)+ tan^(-1)(x^(3))) " where " x in R - {-1,1}` is equal to

A

`(2x)/(1-x^(2))`

B

`tan(2 tan^(-1)x)`

C

`tan[cot^(-1)(-x)-cot^(-1)(x)] `

D

`tan(2cot^(-1)x)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

2tan(tan^(-1)(x)+tan^(-1)(x^(3))), where x in R-{-1,1} is equal to (2x)/(1-x^(2))t(2tan^(-1)x)tan(cot^(-1)(-x)-cot^(-1)(x))tan(2cot^(-1)x)

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

If tan^(-1) 3 +tan^(-1)x=tan^(-1)8 then x =

If tan^(-1)x+tan^(-1)(1-x)=tan^(-1)(4/3) then x=

If tan^(-1)(x+1)+ tan^(-1)(x-1)= tan^(-1)(8/31) ,then x is equal to

(tan^(-1)x)/(1+tan^(-1)x)" w.r.t."tan^(-1)x

sin (tan^(-1) x)," where "|x| lt 1 , is equal to:

If 2tan^(- 1)(c o s e c(tan^(- 1)(x))-tan(cot^(- 1)(x)))=tan^(- 1)y then y is equal to

If tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt 1/sqrt3 . Then, the value of y is