Home
Class 12
MATHS
For x,y,z,t in R, if sin^(-1)x+cos^(-1)y...

For `x,y,z,t in R`, if `sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi`, then the value of `tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t)` is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given inequality and find the value of the expression involving inverse tangent functions. ### Step 1: Understanding the Inequality We start with the inequality: \[ \sin^{-1} x + \cos^{-1} y + \sec^{-1} z \geq t^2 - \sqrt{2\pi} t + 3\pi \] ### Step 2: Using Inverse Trigonometric Identities Recall the following identities: 1. \(\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}\) 2. \(\sec^{-1} z = \cos^{-1} \left(\frac{1}{z}\right)\) for \(z \geq 1\) ### Step 3: Finding the Minimum Values - The minimum value of \(\sin^{-1} x\) is \(-\frac{\pi}{2}\) (when \(x = -1\)). - The minimum value of \(\cos^{-1} y\) is \(0\) (when \(y = 1\)). - The minimum value of \(\sec^{-1} z\) is \(0\) (when \(z = 1\)). Thus, we can say: \[ \sin^{-1} x + \cos^{-1} y + \sec^{-1} z \geq -\frac{\pi}{2} + 0 + 0 = -\frac{\pi}{2} \] ### Step 4: Analyzing the Right-Hand Side Now we analyze the right-hand side: \[ t^2 - \sqrt{2\pi} t + 3\pi \] This is a quadratic expression in \(t\). The minimum value occurs at: \[ t = \frac{\sqrt{2\pi}}{2} \] Substituting this back into the quadratic gives: \[ \left(\frac{\sqrt{2\pi}}{2}\right)^2 - \sqrt{2\pi} \cdot \frac{\sqrt{2\pi}}{2} + 3\pi = \frac{2\pi}{4} - \frac{2\pi}{2} + 3\pi = \frac{\pi}{2} - \pi + 3\pi = \frac{3\pi}{2} \] ### Step 5: Setting Up the Inequality Now we have: \[ -\frac{\pi}{2} \geq \frac{3\pi}{2} \] This inequality does not hold, which means the left-hand side must be greater than or equal to the right-hand side. ### Step 6: Finding the Value of the Expression Now we need to find: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z + \tan^{-1} \left(\sqrt{\frac{2}{\pi}} t\right) \] Since \(\tan^{-1} x\), \(\tan^{-1} y\), and \(\tan^{-1} z\) can take values between \(-\frac{\pi}{2}\) and \(\frac{\pi}{2}\), we can analyze the maximum possible value of this expression. ### Final Step: Conclusion From the earlier analysis, we can conclude that: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z + \tan^{-1} \left(\sqrt{\frac{2}{\pi}} t\right) = \frac{\pi}{2} \] Thus, the final answer is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The principal value of cos^(-1) (cos 5t^(2)) is

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

If tan^(-1)x,tan^(-1)y,tan^(-1)z are in A.P the (2y)/(1-y^(2))=

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2 pi then find the value of x^(2)+y^(2)+z^(2)+t^(2)

" (a) "tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)(x+y+z-xyz)/(1-xy-yz-zx)

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=