Home
Class 12
MATHS
Let f(x)=(1)/(pi) (sin^(-1)x+cos^(-1)x+t...

Let `f(x)=(1)/(pi) (sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10)`, if the absolute maximum value of `f(x)=M` , then the integral part of `(1)/(M)` is _____________ .

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(pi)(sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10) such that the maximum value of f (x) is m, then find the value of (104 m -90) .

Find the range of f(x)= (1)/(pi)sin^(-1)x+tan^(-1)+(x+1)/(x^(2)+2x+5)

Let f(x)=sin^(-1)2x+cos^(-1)2x+sec^(-1)2x Then the sum of the maximum and minimum values of f(x) is

Let f(x)=sin^(-1)((1)/(|x^(2)-1|))+cos^(-1)((1-2|x|)/(3))

Let f(x)=sin x+cos x+tan x+sin^(-1)x+cos^(-1)x+tan^(-1)x Then find the maximum and minimum values of f(x)

Let f(x)=min{4x+1,x+2,-2x+4}. then the maximum value of f(x) is

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to