Home
Class 12
MATHS
Sum to nfinite terms the series: cot^-1(...

Sum to nfinite terms the series: `cot^-1(162+ 3/4)+cot^-1 (2^2+3/4)+cot^-1 (3^2+3/4)+….

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum to infinite terms the series: cot^-1(1^2+ 3/4)+cot^-1 (2^2+3/4)+cot^-1 (3^2+3/4)+….

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

The sum to infinite terms of the series cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+

If the sum of first 16 terms of the series s=cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+ up to terms is cot^(-1)((1+2^(n))/(2(2^(16)-1))), then find the value of n.

The sum of the infinite series cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+cot^(-1)((39)/(4))....oo

Find the sum to n terms of the series S_(n)=cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+..... upto n terms ?

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Prove that cot^(-1)(3)-cot^(-1)(4)=cot^(-1)(13)