Home
Class 12
MATHS
If x satisfies the cubic equation ax^(3...

If x satisfies the cubic equation `ax^(3)+bx^(2)+cx+d=0` such that `cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi`, then find the value of `(b+c)-(a+d)`.

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)-1 is a factor of ax^(3)+bx^(2)+cx+d show that a+c=0

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

If sin^(3)x cos3x+cos^(3)x sin3x=(3)/(8), then the value of sin4x is (1)/(2)(b)1(c)-(1)/(2)(d)0

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)be pi If x satisfies the equation ax^(3)+bx^(2)+cx-c_(1)=0, then the value of (b-a-c) is

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is :

If 1,2,3 and 4 are the roots of the equation x^(4)+ax^(3)+bx^(2)+cx+d=0, then a+2b+c=

Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-1)| , then What is the value of a + b + c + d ?

If +-2,quad 3 are the roots of ax^(4)+bx^(3)+cx^(2)+dx+e=0 then the roots of a(x-1)^(3)+b(x-1)^(2)+c(x-1)+d=0